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Strong Feature Sets from Small Samples
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ABSTRACT

For small samples, classi� er design algorithms typically suffer from over� tting. Given a set
of features, a classi� er must be designed and its error estimated. For small samples, an
error estimator may be unbiased but, owing to a large variance, often give very optimistic
estimates. This paper proposes mitigating the small-sample problem by designing classi� ers
from a probability distribution resulting from spreading the mass of the sample points to
make classi� cation more dif� cult, while maintaining sample geometry. The algorithm is
parameterized by the variance of the spreading distribution. By increasing the spread, the
algorithm � nds gene sets whose classi� cation accuracy remains strong relative to greater
spreading of the sample. The error gives a measure of the strength of the feature set as
a function of the spread. The algorithm yields feature sets that can distinguish the two
classes, not only for the sample data, but for distributions spread beyond the sample data.
For linear classi� ers, the topic of the present paper, the classi� ers are derived analytically
from the model, thereby providing an enormous savings in computation time. The algorithm
is applied to cancer classi� cation via cDNA microarrays. In particular, the genes BRCA1
and BRCA2 are associated with a hereditary disposition to breast cancer, and the algorithm
is used to � nd gene sets whose expressions can be used to classify BRCA1 and BRCA2
tumors.
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1. INTRODUCTION

Given a set of features on which to base a classi� er, two issues must be addressed: 1) design
of a classi� er from sample data that is close to optimal; 2) estimation of the error of the designed

classi� er. Here we are interested in feature selection from a large set of potential features. The key issue is
whether a particular feature set provides good classi� cation. Hence, a main concern is the precision with
which the error of the designed classi� er estimates the error of the optimal classi� er. If the amount of data
for both design and error estimation is unlimited, then various methods exist to estimate the optimal error
to within any desired precision; however, the problem becomes much more dif� cult in situations where the
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amount of data is very limited. In this case, an error estimator may be unbiased but have a large variance,
and therefore often be low. This can produce a large number of variable sets and classi� ers with low error
estimates. A small sample may yield thousands of variable sets for which the error estimate from the data
at hand is zero.

In this paper, we propose a procedure that alleviates this problem by designing classi� ers from a
probability distribution resulting from spreading the mass of the sample points via a circular distribution
to make classi� cation more dif� cult, while maintaining sample geometry. The algorithm is parameterized
by the variance of the circular distribution. By considering increasing variances, the algorithm � nds gene
sets whose classi� cation accuracy remains strong relative to greater spreading of the sample. The error
then gives a measure of the strength of the feature set as a function of the variance.

The immediate application of interest is classi� cation via cDNA microarrays, which provide expression
measurements for thousands of genes simultaneously (Schena et al., 1995; DeRisi et al., 1997; Duggan
et al., 1999). A key goal for the use of expression data is to perform classi� cation via different expression
patterns. A successful classi� er provides a list of genes whose product abundance is indicative of important
differences in cell state, such as healthy or diseased, or one particular type of cancer or another. Among such
informative genes are those whose products play a role in the initiation, progression, or maintenance of the
disease. Two central goals of molecular analysis of disease are to use such information to directly diagnose
the presence or type of disease and to produce therapies based on the disruption or correction of the aberrant
function of gene products whose activities are central to the pathology of a disease. Correction would be
accomplished either by the use of drugs already known to act on these gene products or by developing
new drugs targeting these gene products. Achieving these goals requires designing a classi� er that takes a
vector of gene expression levels as input and outputs a class label, which predicts the class containing the
input vector. Classi� cation can be between different kinds of cancer, different stages of tumor development,
or many other such differences. Classi� ers are designed from a sample of expression vectors. This requires
assessing expression levels from RNA obtained from the different tissues with microarrays, determining
genes whose expression levels can be used as classi� er variables, and then applying some rule to design the
classi� er from the sample microarray data. Design, performance evaluation, and application of classi� ers
must take into account randomness arising from both biological and experimental variability. To rapidly
move from expression data to diagnostics that can be integrated into current pathology practice or to
useful therapeutics, expression patterns must carry suf� cient information to separate sample types. Further,
suf� cient information must be vested in sets of genes small enough to serve as either convenient diagnostic
panels or as candidates for the very expensive and time-consuming analysis required to determine if they
could serve as useful targets for therapy.

The inherent power of expression data to separate sample types was � rst clearly demonstrated by
clustering samples on the basis of gene expression patterns. Such demonstrations provided separation,
but utilized large numbers of genes: rhabdomyosarcoma, 495 genes (Khan et al., 1998); colon cancer,
2,000 genes (Alon et al., 1999); lymphoma, 4,026 genes (Alizadeh et al., 1999); breast cancer, 1,753
genes (Perou et al., 2000); and melanoma, 3,613 genes (Bittner et al., 2000). Classi� cation using a
variety of methods has been used to exploit the class-separating power of expression data using fewer
genes: leukemias, 50 genes (Golub et al., 1999); various cancers, 173–4,375 genes (Ben-Dor et al., 2000);
small, round, blue-cell cancers, 96 genes (Khan et al., 2001). Even these gene sets are too large to allow
construction of a practical immunohistochemical diagnostic panel.

The problem at this stage is that there is a very large set of gene-expression pro� les (features) and
typically a small number of microarrays (sample points), making it dif� cult to � nd the best features from
which to construct a classi� er. Thus, it behooves us to � nd gene sets that can perform accurate classi� cation
in distributional settings whose dispersions are in excess of the sample data. We will demonstrate the
methodology by � nding genes and sets of genes that show strong potential for discrimination between
types of hereditary breast cancer.

2. CLASSIFIER DESIGN

Given a set of features (random variables) X1; X2; : : : ; Xd from which to form a feature vector X D
.X1; X2; : : : ; Xd/, a binary classi� cation problem involving X is determined by a binary random variable
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Y , taking the values (class labels) 0 and 1. A classi� er Ã is a function of X for which Ã.X/ is an
estimator of Y . The error of Ã is de� ned by the expected absolute difference between Y and Ã.X/,
"[Ã ] D E[jY ¡ Ã.X/j]; "[Ã ] also equals the probability, P .Ã.X/ 6D Y /, of an incorrect classi� cation. An
optimal classi� er, Ãd , is a function on Euclidean space <d that has minimal error, "d , called the Bayes
error. An optimal classi� er is determined by the conditional probability of the label given the observation:
Ãd.x/ D 1 if and only if P .Y D 1jx/ > 0:5.

Unless the distribution of .X; Y / known, which is rare, a classi� er Ãn is designed from sample data
pairs by a classi� cation rule to estimate Ãd , and "d is estimated by the error "n of Ãn. Since "d is the
error of the optimal classi� er, "n ¸ "d . There is a design cost 1n D "n ¡ "d . Since they depend on
the sample, "n and 1n are random variables dependent on the classi� cation rule and the feature-label
distribution. A classi� cation rule is consistent for the distribution of .X; Y / if E[1n] ! 0 as n ! 1,
where the expectation is relative to the distribution of the sample. If E[1n] ! 0 for any distribution, then
the classi� cation rule is universally consistent. While theoretically useful and pertinent for large samples,
consistency is of little importance for very small samples.

To reduce design cost, one can restrict the functions from which an optimal classi� er can be chosen
to a function class C . This leads to estimating the optimal constrained classi� er, Ã C 2 C , having error
" C . Constraining the classi� er reduces design cost at the cost of increasing the error of the best possi-
ble classi� er. Since optimization in C is over a subclass of classi� ers, "C ¸ "d . The constraint cost is
1 C D " C ¡ "d . A classi� cation rule yields a classi� er Ãn;C 2 C with error "n;C , and "n; C ¸ " C ¸ "d .
Design cost for constrained classi� cation is 1n;C D "n;C ¡ " C . For small samples, this can be substan-
tially less than 1n, depending on C and the rule. The error of the designed constrained classi� er is de-
composed as

"n;C D "d C 1 C C 1n; C : (1)

The expected error of the designed classi� er from C is

E
£
"n;C

¤
D "d C 1 C C E

£
1n;C

¤
: (2)

The constraint is bene� cial if and only if 1 C < E [1n] ¡ E
£
1n;C

¤
. If the cost of constraint is less than

the decrease in expected design cost, then the expected error of Ãn; C is less than that of Ãn.
The use of strong classi� ers, as discussed in this paper, applies to any classi� cation rule; however, we

focus on perceptrons owing to the small amount of data they require for design relative to more general
classi� ers. They also have a number of attractive properties: simplicity, a linear-like structure, and contri-
butions of individual variables that can be easily appreciated. For a feature vector X D .X1; X2; : : : ; Xd/,
a perceptron is de� ned by

Ã.X/ D T .a0 C a1X1 C a2X2 C ¢ ¢ ¢ C adXd/ (3)

where T is a threshold function, T.z/ D 0 if z · 1=2, and T.z/ D 1 if z > 1=2. A perceptron splits <d into
two by the hyperplane de� ned by setting the sum in the preceding equation to 0. Design of a perceptron
requires estimating the coef� cients a1; a2; : : : ; ad , and a0.

To give some idea of our reason for focusing on perceptrons, we consider the alternative of using
neural networks, which are multilayer perceptrons. A basic two-layer neural network takes the outputs
of k perceptrons (neurons) and inputs these outputs into a � nal perceptron. By increasing the number of
neurons, one can arbitrarily decrease the constraint (Cybenko 1989; Funahashi, 1989; Hornik et al., 1989).
But this raises the dilemma of balancing the contributions to E["n; C ] in Equation 2. The data requirement
grows rapidly as the number of neurons is increased. The advantage in design error of perceptrons over
neural networks can be measured by the Vapnik-Chervonenkis (VC) dimension, VC , of a constraint, whose
de� nition we leave to the literature (Vapnik et al., 1971; Devroye et al., 1996). The VC dimension
grows with diminishing constraint. Generally speaking, the sample size must signi� cantly exceed the VC
dimension to have small design error. This is evidenced by a well-known bound for design error: if the
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designed classi� er is chosen from C according to which classi� er in C makes the minimum number of
errors on the sample data (the empirical-error rule), then

E
£
1n;C

¤
· 4

r
Vc log n C 4

2n
: (4)

The VC dimension of the perceptron of Equation 3 is d C 1. The VC dimension of a neural network with
k neurons exceeds kd if k is even and exceeds .k ¡ 1/d if k is odd (Baum, 1988).

3. PROBLEM OF SMALL-SAMPLE CLASSIFIER ERROR ESTIMATION

If there is suf� cient data, then it can be split into training and test data to design a classi� er and to
estimate the error of the designed classi� er, respectively. Its estimated error is the proportion of errors it
makes on the test data. The estimate is unbiased and its variance tends to zero as n ! 1. When the
data is limited and all of it is used to design the classi� er, there are several ways to estimate the classi� er
error. We comment on two of these. The resubstitution estimate, "n, is the fraction of errors made by Ãn

on the sample data. Typically, it is low-biased, meaning E
£
"n

¤
· E ["n]. For small samples, the bias can

be severe. For leave-one-out estimation, n classi� ers are designed from sample subsets formed by leaving
out one sample pair. Each is applied to the left-out pair, and the estimator O"n is 1=n times the number of
errors made by the n classi� ers. Since the classi� ers are designed on sample sizes of n ¡ 1, O"n actually
estimates the error "n¡1. It is an unbiased estimator of "n¡1, meaning that E

£
O"n

¤
D E

£
"n¡1

¤
; however,

its variance can be substantial for small n (Devroye et al., 1996). There can be a nonnegligible probability
that "n is greater than "d , but that O"n is signi� cantly smaller than "d . Unless one is prudent, this can lead to
the erroneous conclusion that both the designed and optimal classi� ers perform well, and the concomitant
conclusion that the feature set is good, when in fact the feature set is poor.

To illustrate the problem of leave-one-out estimation, we consider histogram rules. For these, <d is
partitioned into a disjoint union of cells, and Ãn.x/ is de� ned to be 0 or 1 according to which is the
majority label in the cell. The cells may change with n. They may depend on the sample points, but not
on Y . The cubic histogram rule partitions <d into same-size cubes. If the cube edge length approaches 0
and n times the common volume approaches in� nity as n ! 1, then the rule is universally consistent.
For any partition, there exists a distribution for which (Devroye et al., 1996)

E
hO"n ¡ "n

2
i

¸
1

e1=12
p

2¼n
: (5)

Since E[O"n] D E["n¡1], the inequality gives an approximate lower bound on the maximum variance of
O"n ¡ "n over all distributions. Lacking distribution knowledge, we confront the possibility of this lower
bound. Taking the square root gives a lower bound on the maximum standard deviation. For n D 25,
this lower bound is 0.1355; for n D 50, it is 0.1139. These are not good for a lower bound, even for a
worst-case bound. We cannot be sure that we are not doing worse, perhaps substantially worse, than these.
An upper bound for all distributions is given by Devroye et al. (1996)

E
hO"n ¡ "n

2
i

·
1 C 6e¡1

n
C

6
p

¼.n ¡ 1/
: (6)

This is not encouraging. Taking the square root gives an upper bound on the variance. For n D 25, this
upper bound is 0.9051; for n D 50, it is 0.7401. These are useless. Using leave-one-out estimation to
estimate the Bayes error is risky. Even though "n ¸ "d , there is nonnegligible likelihood that O"n will be
so beneath "n that it gives a very optimistic estimate of "d .

Given a large set of potential features, it is necessary to � nd a small subset that provides good classi-
� cation. Every subset is a potential feature set. For v variables, there are 2v ¡ 1 possible feature vectors.
The number of possible vectors can be astronomical, and one cannot apply a classi� cation rule to all of
these; nonetheless, even if the classes are moderately separated, for small samples there may be thousands
of vectors for which O"n ¼ 0. It would be wrong to conclude that the Bayes errors of all the corresponding
classi� ers are small.
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FIG. 1. Estimation of misclassi� cation errors.

Consider the situation in which one has formed a list of variables, and variables are adjoined in a
stepwise fashion to the feature vector. As a function of d , the Bayes error decreases, but this is not so for
the error of the designed classi� er. For � xed sample size n and different numbers of variables d , Fig. 1
shows a generic situation for "d and the expected error E ["n.d/] of the designed � lter; "n.d/ decreases;
E ["n.d/] decreases and then increases. Were E ["n.d/] known, then we could conclude that "d is no worse
than E ["n.d/]; however, we have only an estimate of "n.d/, which for small samples can be well below
(or above) "d . Thus, the estimate curve O"n.d/ might drop far below the Bayes-error curve "d , even being
0 over a fairly long interval. If we now consider all possible variable subsets of size d , we can expect to
have many optimistic estimations.

4. FEATURE STRENGTH

To lower the risk of choosing a feature set based on a low error estimate, rather than design a classi� er
directly from a small sample, we propose designing it from a distribution based on the sample and for
which it is more dif� cult to distinguish the labels. This will be done in a parameterized manner in which
the parameter relates to the dif� culty of classi� cation. This paper considers only perceptrons. In principle,
the distributional method can be used for other types of classi� ers. However, in the perceptron case, we
can apply a strictly analytic approach to � nding the classi� er and its error. This is critical for computation
in the context of a large set of features.

To approximate the optimal perceptron, we use the method of � nding the optimal mean-square-error
(MSE) linear � lter and then thresholding. Given the joint feature-label distribution, the optimal linear
estimator of Y based on X is determined by a weight vector a. The autocorrelation matrix for X and the
cross-correlation vector for X and Y are given by

RX D

0

BBB@

E[X1X1] E[X1X2] ¢ ¢ ¢ E[X1Xd ]
E[X2X1] E[X2X2] ¢ ¢ ¢ E[X2Xd ]

:::
:::

: : :
:::

E[Xd X1] E[XdX2] ¢ ¢ ¢ E[XdXd ]

1

CCCA
(7)

E [XY ] D

0

BBB@

E[X1Y ]
E[X2Y ]

:::

E[XdY ]

1

CCCA
; (8)
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respectively. If RX is nonsingular, then the optimal weight vector is given by a D R¡1
X E [XY ]. If RX is

singular, then R¡1
X is replaced by the pseudoinverse of RX (Dougherty, 1999). The MSE-based approxi-

mation of the optimal perceptron with no constant term is given by T
¡
at X

¢
, where T thresholds at 1/2.

The sample-based classi� cation rule for the weight vector is determined by estimating RX and E [XY ].
For a given sample sn D f.x1; y1/; .x2; y2/; : : : ; .xn; yn/g, where xi D .xi1; xi2; : : : ; xid /t , the estimations
are given by the matrix and vector

RX;n D
1
n

0

BBBBBBBBBBBBBBB@

nX

kD1

x1kx1k

nX

kD1

x1kx2k ¢ ¢ ¢
nX

kD1

x1kxdk

nX

kD1

x2kx1k

nX

kD1

x2kx2k ¢ ¢ ¢
nX

kD1

x2kxdk

:::
:::

: : :
:::

nX

kD1

xdkx1k

nX

kD1

xdkx2k ¢ ¢ ¢
nX

kD1

xdkxdk

1

CCCCCCCCCCCCCCCA

(9)

E [XY ]n D
1

n

0

BBBBBBBBBBBBBBB@

nX

kD1

x1kyk

nX

kD1

x2kyk

:::

nX

kD1

xdkyk

1

CCCCCCCCCCCCCCCA

: (10)

Since we desire a perceptron with a constant term, we apply the preceding considerations to the aug-
mented vector .1; Xt /t .

To spread the mass of the given sample sn , we consider the random vector .U; V / having the equally
likely outcomes .x1; y1/, .x2; y2/, : : : , .xn; yn/. The autocorrelation matrix for U (not an estimate) is given
by RU D RX;n, and the cross-correlation vector for U and V is given by E[UV ] D E[XY ]n. If Z is a
zero-mean random vector that is independent of .U; V /, we can consider the random vector .U C Z; V /.
By independence,

RUCZ D RU C RZ; (11)

E [.U C Z/V ] D E [UV ] : (12)

Hence, the optimal linear estimator of V in terms of U has the weight vector

w D .RU C RZ/¡1E [UV ] D
¡
RX;n C RZ

¢¡1
E [XY ]n : (13)

The classifying perceptron is obtained by applying T to the linear estimator determined by w. If Z is
parameterized by its variance ¾ 2, then the resulting perceptron, Ã¾ , is parameterized by that variance. We
call Z the spread, its distribution the spread distribution, and Ã¾ the ¾ -perceptron.

The error, "¾ , for Ã¾ can be computed analytically from the de� ning hyperplane. Label the half-spaces
determined by the hyperplane as A0 and A1, where these refer to the values of x that are 0 and 1,
respectively, for the classi� er. Then, for Z with variance ¾ 2,

"¾ D
1

n

0

@
X

fxk :yk D1g

Z

A0

fZ.z ¡ xk/dz C
X

fxk :ykD0g

Z

A1

fZ.z ¡ xk/dz

1

A : (14)
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For � xed ¾ , if "¾ is treated as a function of d by adjoining variables to the feature vector, then "¾

is a decreasing function of d because it is computed analytically from the distribution, not estimated
from a sample. For ¾ D 0, which means there is no spreading of the sample mass, "¾ is equal to the
resubstitution error estimate for the sample. Figure 2 illustrates the effects of increasing ¾ on the error under
the assumption that the noise vector possesses a uniform circular distribution. Dots and diamonds denote
labels 0 and 1, respectively. We have used both uniform circular and uncorrelated Gaussian distributions.
The autocorrelation matrices for these are RZ D r2.d C 2/¡2I and RZ D ¾ 2I, respectively, where r is
the circle radius and I is the identity matrix. Equation 14 is expressed in detail for these distributions in
the Appendix.

We de� ne the strength of the feature vector X relative to the sample and spread distribution by

³X.¾ / D 1 ¡ "¾ : (15)

Strength is a decreasing function of ¾ . We say that feature vector X1 is stronger than feature vector X2 at
spread ¾ if ³X1 .¾ / ¸ ³X2.¾/. Vector X1 is uniformly stronger than X2 if ³X1 .¾ / ¸ ³X2.¾/ for all ¾ ¸ 0.
For a family F of feature vectors, X0 is the strongest at ¾ in F if

³X0 .¾ / D sup
X2F

³X.¾ /: (16)

It is uniformly strongest in F if the equality holds for all ¾ ¸ 0.
To examine the behavior of the designed classi� er and the error estimator relative to ¾ , we consider a

two-variable model in which each class is de� ned by an uncorrelated Gaussian distribution with variances
1, and the means of the two classes are separated in such a way that the optimal linear classi� er relative
to the distributions has Bayes error, "opt , 0.0786. We let the total sample size be n D 20 and compute the
¾ -perceptron for various sizes of ¾ between 0 and 1.2. This is done randomly 1,000 times to estimate
several error curves: 1) the expected ¾ -error, E["¾ ]; 2) the expected leave-one-out error, E[O"n.¾/], for
the ¾ -perceptron; and 3) the expected leave-one-out error, E[O"HK], for the Ho-Kashyap classi� er on
the sample data (which is not dependent on ¾ ). The curves are shown in Fig. 3(a) along with one-
standard-deviation error bars for "¾ , O"n.¾/, and O"HK , and the Bayes error. The curve for E["n.¾/] is
not shown because it is very close to E[O"n.¾/], since E[O"n.¾/] D E["n¡1.¾ /]. Moreover, we have not
shown E["HK], the expected error for the Ho-Kashyap classi� er, since it is very close to E[O"HK] for the
same reason.

From Fig. 3(a), we see that E["n.¾ /] < E["HK] for 0 · ¾ · 1, so that in this range the expected
performance of the ¾ -perceptron is better than that of the Ho-Kashyap classi� er. For ¾ D 0:4, E["¾ ] is
approximately equal to the Bayes error, so that "0:4 provides an approximately unbiased estimator of the
Bayes error. For ¾ D 0:6, E["¾ ] ¼ E["n.¾ /], so that "0:6 provides an approximately unbiased estimator
of the expected error of the designed ¾ -perceptron. For ¾ D 0:8, the Bayes error is approximately one
standard deviation of the ¾ -error below the mean ¾ -error, so that "0:8 provides a conservative estimator
of the Bayes error. The danger of using the leave-one-out error is evident from the error bars. Even
for ¾ D 1:2, the one-standard-deviation bar is well below the Bayes error for both the ¾ -perceptron
and the Ho-Kashyap classi� er. The tighter variance of the ¾ -error as compared to the leave-one-error is
demonstrated in Fig. 3(b), which shows standard-deviation curves for the various errors. The lower variance
of the true error is of little use in practice, since the true error is not obtainable without knowledge of
the distribution.

When designing a classi� er from training data, it is necessary to choose values of the spread ¾ at which
to design the classi� er. A simple rule of thumb is to set a threshold for the ¾ -error and push ¾ as high as
possible while keeping the error below the threshold. While this approach can be (and has been) used to
� nd feature sets, it is unsystematic and does not use normalized spread values. A systematic approach is
to derive a dispersion value for the sample data and use that value to arrive at normalized spread values.
Consider a feature vector X D .X1; X2; : : : ; Xd/ and let ¾k;C be the standard deviation of Xk on the class
C . In practice, ¾k;C is estimated from the training data. De� ne

¾max D max
©
¾1; C 0

; : : : ; ¾d;C 0
; ¾1; C 1

; : : : ; ¾d;C 1

ª
: (17)
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A normalized spread, ¾nor , between 0 and 1 is chosen. This value corresponds to the situation in Fig. 3 in
which all variances are 1. To obtain a corresponding spread for the sample data, we take

¾ D ¾nor¾max : (18)

By using ¾max for the normalization, we maintain a conservative attitude towards estimation of misclassi-
� cation error. One could perhaps take a less conservative approach if so desired.

5. ALGORITHM FOR SELECTING FEATURE SETS

The task is to � nd strong feature sets for increasing values of ¾ . The dif� culty is that the search is
combinatorial and cannot exhaust all possible feature sets. Hence, a suboptimal search is necessary.

Let X d D fXd;1; Xd;2; : : : ; Xd;m.d/g denote the class of all feature vectors of size d that can be constructed
from n available features. Then m.d/ D Cn;d , the number of combinations of size d that can be formed from
a set of size n. For small n and d , we can try all possible combinations. Even if n is quite large, we may
be able to exhaust the full set of combinations for d D 2. Beyond that, exhaustion is impossible for large
n. Various combinatorial search algorithms and other heuristic algorithms (Srinivas et al., 1994; Bresina,
1996; Li et al., 1998; Mohan. et al., 1999) can be employed, none of which provides an exhaustive search.
A simple and quick approach is a random-walk search (Masri et al., 1980; Solis et al., 1981). As often
reported, it can provide a good solution in some cases, but may not work well if we are interested in � nding
as many solutions as possible that satisfy the constraints of the problem. Also, it is not computationally
ef� cient (Ustyuzhaninov, 1980; Rubinstein et al., 1982).

We use a heuristic search algorithm, a kind of guided random walk (Price, 1983; Ali et al., 1994; Bresina,
1996; Mohan et al., 1999) that utilizes some probabilistic information constructed from a previous search
and evaluation of the error with smaller or the same size d . There are quite a few algorithms available,
perhaps the most famous being the stochastic-based search algorithms (Hogg, 1996; Mohan et al., 1999)
and genetic search (Goldberg, 1989; Srinivas et al., 1994).

The idea is the following: if a feature is a part of good solution set with small number of features in it,
then it is more likely to be a part of a good solution using a larger set, therefore giving more chance to
being selected in a feature vector. This can be viewed as a simplest form of genetic algorithm, with only
reproduction. In another direction, if a good feature set is found in some part of the search space, then
we may want to move to another region to � nd more solutions, the same simple genetic algorithm with
a different objective function. This would be useful for � nding many good solutions rather than � nding a
best solution.

To quantify these considerations, let X d;X D fXd;1; Xd;2; : : : ; Xd;kg denote the class of all feature vectors
that include feature X in them. Then, let "[X] be the classi� cation error for X, and

"1;d[X] D maxf"[X] : X 2 X d;Xg

"2;d [X] D minf"[X] : X 2 X d;Xg (19)

"3;d[X] D
1

ºd.X/

X

fX:X2X d ;X g
"[X]

where ºd .X/ is the number of feature sets of size d containing X. In turn, these measures give the maximum,
minimum, and average error among feature sets containing X, respectively. We de� ne the poorness of a
feature X by

´d [X] D
3X

iD1

®i"i;d [X] (20)
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FIG. 2. Misclassi� cation error for distribution-ized samples.
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where ®i is a weight on each error. Then, the poorness of a feature Xk can be normalized as

´d;0[Xk] D
´d [Xk]

nX

jD1

´d [Xj ]

: (21)

The sum of all normalized poornesses is 1. Similarly, the goodness and normalized goodness of Xk are
de� ned as

°d [Xk] D
3X

iD1

®i.1 ¡ "i;d [Xk]/ (22)

°d;0[Xk] D
°d [Xk]

nX

jD1

°d [Xj ]

: (23)

Either the normalized poorness or goodness can be used to construct a feature set. Owing to normalization,
either can be used as the probability of a feature being selected in the construction. If all poornesses or
goodnesses are equal, then the search is reduced to a regular random walk.

The choice of poorness or goodness depends on the type of feature desired by the algorithm. If conditions
are stringent, such as we desire a low error rate and the labels are not well separated, then we may be
satis� ed in � nding a single feature set, in which case we might choose to use goodness as a probability.
On the other hand, if conditions are easy and we wish to � nd many good feature sets, then it may be better
to use poorness. The choice of values for each ®i is also an issue. It also depends on the conditions of
the problem and the type of solutions desired. A few choices of immediate use are .0; 1; 0/, .0; 0; 1/, and
.1; 1; 1/ for .®1; ®2; ®3/. The � rst alpha vector uses the minimum, the second the expectation, and the third
an equal weighting between all. Basically, this is a kind of random walk through space, but with a little
bit of help by exploiting the previous walks. Like other combinatorial search algorithms, its performance
depends on the appropriateness of the heuristics.

There are many potential variants of the current search algorithm. For instance, we can apply a full genetic
search algorithm; however, full implementation of a genetic algorithm can be computationally burdensome.
The algorithm has been effective in its present form and useful results have been demonstrated by running
it on the Beowulf cluster-based parallel system at CIT/NIH. The algorithm has been designed from the
outset so that it can be easily opted to a parallelization. It is expected that other search strategies may be
applied in the future, depending on the application and the computing environment.

6. APPLICATION TO CLASSIFICATION OF HEREDITARY BREAST CANCER

The scheme for � nding strong classi� er genes was tested on a published data set (Hedenfalk et al.,
2001) comparing the expression pro� les of breast tumors from patients carrying mutations in the pre-
disposing genes, BRCA1 or BRCA2, or from patients not expected to carry a hereditary predisposing
mutation. Pathological features can help to distinguish BRCA1 and BRCA2 mutation-positive tumors.
For BRCA1, there is a higher mitotic count, the presence of pushing tumor margins, and the presence
of lymphocitic in� ltrate. BRCA2 tumors comprise a more heterogeneous group exhibiting substantially
less tubule formation than sporadic breast cancers. BRCA1 associated tumors are generally both estrogen
receptor and progesterone receptor negative, while BRCA2 derived tumors are more variable in terms of
hormone receptor expression. Altogether, these pathological and genetic differences appear to imply dif-
ferent but overlapping functions for BRCA1 and BRCA2. In the aforementioned study, cDNA microarrays
have been used in conjunction with classi� cation algorithms to show the feasibility of using differences in
global gene expression pro� les to separate BRCA1 and BRCA2 mutation-positive breast cancers. Owing
to the small sample sizes involved, gene-expression-pro� le sets for accurate classi� cation across a large



FINDING GENES FOR BREAST CANCER CLASSIFICATION 137

FIG. 3. Estimated errors with 1-standard-deviation bounds shown.

population could not be quantitatively discovered (Devroye et al., 1996, Dougherty, 2001). Here we show
how the derivation of strong classi� ers can lead to the discovery of meaningful feature sets.

Starting with 3,226 genes, we applied the strong-feature algorithm to subsets of size d equal to 1 through
10 to � nd ¾ -perceptrons for classi� cation between BRCA1 tumors and the collection of both BRCA2 and
sporadic tumors. We used various values of ¾ between 0.2 and 0.9. Owing to the size of the search space,
we exploited the full search space for d D 1 and 2 and looked at more than 10,000,000 feature vectors for
each d > 2. To implement the algorithm, a Beowulf-type cluster-based parallel computer at the Center for
Information Technology at the National Institutes of Health was used. The total number of CPUs utilized
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was more than 72 and it took about two hours to � nish the job. For each d , there is a gene set obtaining
minimum error, and in each case a list of outstanding gene sets has been generated. In a joint project,
IBM and NuTec Sciences, Inc. are building a 5,000 CPU machine that will be used to apply various
microarray-based algorithms. Projections show that the current breast-cancer application can be run in less
than one hour using six billion feature sets at each stage, thereby assuring results that are very close to
optimal.

The results include many gene pairs that provide good classi� cation for classifying BRCA1 versus
the others (BRCA2 and sporadic). Some of these are shown in Table 1, which includes the ¾ -error for
¾nor D 0:6 and ¾nor D 0:8. Strong performing 3-gene classi� er sets are also shown in Table 1. In the
table, the gene sets are sorted in ascending order for ¾nor D 0:8. For all classi� er sets shown in the tables,
the leave-one-out error is 0. This compares favorably to the leave-one-out error obtained in the original
study, where 51 genes were used to obtain a leave-one-out error of 1/22. Figure 4 shows the hyperplane
constructed with a spread of ¾nor D 0:8 to classify BRCA1 from BRCA2 and sporadic tissues using the
two genes named on the axes. We see that with a signi� cant spread the ¾ -perceptron yields a very small
¾ -error and no misclassi� cations. In the � gure, the closest samples from each class are shown with the
corresponding distances from the hyperplane.

On the basis of both histology and overall expression pro� les, it is easier to separate BRCA1 from
BRCA2 and sporadic tumors than to separate BRCA2 and sporadic tumors from each other. This implies
a greater dif� culty in classifying BRCA2 versus others (BRCA1 and sporadic) than for BRCA1 versus
others. This greater dif� culty is observed when � nding strong classi� ers. Table 2 shows strong performing
2- and 3-gene classi� er sets. In particular, the 3-gene ¾ -errors are very small. The leave-one-out error is 0
for all sets listed in the tables. This compares very favorably with the leave-one-out error of 4/22 obtained
in the original study using 51 genes.

Another indication of the power of the strong-classi� er approach can be seen with regard to 3-class
separation (BRCA1, BRCA2, sporadic). In the original study (Hedenfalk et al., 2001), 51 genes were
used to produce a multidimensional scaling plot to show decent separation of the classes. Perfect class
separation is achieved by three genes found using strong-classi� er analysis. Figure 5 shows this separation
using KRT8, TCF12, and ARVCF. The triple KRT8, TM4SF1, and ARVCF could also be used to show
the separation. As noted in the introduction, small gene sets are important for the construction of practical
immunohistochemical diagnostic panels.

Table 1. Feature Sets to Classify BRCA1 Tissues Versus BRCA2 and Sporadic Tissues

Error (%)

Feature set ¾nor D 0:6 ¾nor D 0:8

Two genes CTPS EIF2C2 2.7 5.9
cDNA FLJ13495 � s BRPF3 4.0 7.1
cDNA FLJ13495 � s BRF1 4.4 7.5
EIF2C2 MSH2 4.3 7.7
OXCT cDNA FLJ13495 � s 4.7 8.6
KRT8 DRPLA 5.2 9.0
KRT8 ETS2 6.1 9.5
KRT8 TCF12 7.2 11.8
MGC1780 MIF 8.6 12.7
MGC1780 BRPF3 9.1 13.2
KIAA0020 BRPF3 10.0 14.5

Three genes CTPS LOC51723 EIF2C2 2.6 5.7
CLNS1A CTPS EIF2C2 2.7 5.9
CTPS GRP58 EIF2C2 3.4 6.9
MGC1780 SPS MIF 4.0 7.8
SIAH1 KRT8 DRPLA 4.9 8.6
KRT8 PLEC1 DRPLA 4.9 8.8
CTPS EIF2C2 FLJ13910 4.6 8.9
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FIG. 4. Linear classi� er constructed with a spreading, ¾nor D 0:8.

FIG. 5. Separation of three tumor classes.
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Table 2. Feature Sets to Classify BRCA2 Tissues Versus BRCA1 and Sporadic Tissues

Error (%)

Feature set ¾nor D 0:6 ¾nor D 0:8

Two genes ARVCF PHYH 6.1 9.8
ZNF161 COX6C 8.4 12.4
ARVCF TCF12 9.7 13.5
ZNF161 TSC2 10.1 13.3
FGFR3 PDCD5 10.1 13.7
ARHC DCTN4 10.9 15.5
ZNF161 PRO1659 11.6 15.6
SUPT4H1 EST 12.0 16.8
EST(358333) RPS6KB1 12.0 16.8
RBL2 SUPT4H1 12.5 17.5
MCAM CLTC 13.8 18.8
MCAM SUPT4H1 15.0 19.7
ARHC EST(137417) 18.2 22.1

Three genes UGTREL1 GNA12 CDK4 2.5 4.8
GDI2 MTMR4 CDK4 2.7 5.1
NOP56 UGTREL1 PCNA 3.2 5.9
FGFR3 VDR PPP1CB 2.8 6.1
SLC2A5 UGTREL1 CDK4 3.2 6.2
MAPK1 ACTR1A PCNA 3.4 6.5
GDI2 ESTs PCNA 4.0 6.7
ARVCF D123 ITGB2 3.4 6.7
PPP1CB ARVCF VAV3 3.8 7.0
SERPINE1 UGTREL1 PPP1CB 4.0 7.7

A practical issue concerns which individual genes are useful for classi� cation. Tables 3 and 4 show
genes that appear most often in the lists of strong performing gene sets for d equal to 2 through 5, along
with the number of lists in which the gene appears.

When developing a gene expression-based classi� er for a heavily studied system, one expects that some
of the genes identi� ed will have been previously noted as being differentially expressed in that system.
When the method used to develop the classi� ers � nds genes that are most differentially expressed between
the classes, one further expects that these genes may have been seen in other contexts. This is based on the
tendency of genes with highly variable expression to exhibit this variability in a variety of circumstances
and tissues. Both of these expectations are clearly met in this case.

Some of the strong classi� ers separating BRCA1 from BRCA2 and sporadic cancers are quite familiar.
One of the strongest classi� ers, keratin 8 (KRT8), is a member of the cytokeratin family of genes. Cyto-
keratins are frequently used to identify breast cancer metastases by immunohistochemistry, and cytokeratin
8 abundance has been shown to correlate well with node-positive disease (Brotherick et al., 1998). Another
top classi� er is the cyclin D1 gene (PRAD1). Although discovered by virtue of its association with
parathyroid adenomas, this gene has long been associated with breast cancer (Bartkova et al., 1994; Wang
et al., 1994). Similarly, the tumor-associated antigen L-6 (TM4SF1), is a member of a family of integral
membrane proteins, several of which are also overexpressed in tumors (Marken et al., 1992). Antigen
L-6 is frequently over-expressed in carcinomas, and antibody binding to L-6 on tumors in nude mouse
models inhibits their outgrowth (Hellstrom et al., 1986). Receptors and genes interacting with them are well
represented among the strong classi� ers. An unusual version of the GABA receptor, gamma-aminobutyric
acid A receptor pi (GABRP), which has been shown to alter the sensitivity of GABA receptors to the
steroid pregnanolone in the uterus (Hedblom et al., 1997) is found to be more highly expressed in BRCA1
tumors, which are known for their lack of ER and PR receptors. The gene TOB1, which interacts with the
oncogene receptor ERBB2, is found to be more highly expressed in BRCA2 and sporadic cancers, which
are likewise more likely to harbor ERBB2 gene ampli� cations. TOB1 has an antiproliferative activity that
is apparently antagonized by ERBB2 (Matsuda et al., 1996).
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Table 3. Strong Genes Found for Classifying BRCA1 Versus BRCA2 and Sporadic

Clone ID # Gene descriptions

897781 41 keratin 8
375635 17 transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)
45291 11 dentatorubral-pallidoluysian atrophy (atrophin-1)

307843 9 eukaryotic translation initiation factor 2C, 2
823940 7 Tob1, transducer of ERBB2, 1
950682 5 phosphofructokinase, platelet
247818 5 Homo sapiens cDNA FLJ13495 � s, clone PLACE1004425
46182 5 CTP synthase
32790 3 mutS (E. coli) homolog 2 (colon cancer, nonpolyposi s type 1)

840567 3 L6 antigen, transmembrane 4 superfamily member 1
280768 2 L6 antigen, transmembrane 4 superfamily member 1
40959 2 solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5

233194 2 special AT-rich sequence binding protein 1 (binds to nuclear matrix/scaffold-associating DNA’s)
66977 2 androgen induced protein

525518 2 ubiquitin speci� c protease 7 (herpes virus-associated)
841641 2 cyclin D1 (PRAD1: parathyroid adenomatosis 1)
144926 2 ESTs, Weakly similar to B0495.6 [C.elegans]
47884 2 macrophage migration inhibitory factor (glycosylation-inhibiting factor)
52650 2 v-ets avian erythroblastosis virus E26 oncogene homolog 2

366647 2 butyrate response factor 1 (EGF-response factor 1)

There are two further observations derived from the development of these classi� ers that are in keeping
with some of the expression patterns observed among these cancers. One pattern of expression noted
in the BRCA1 tumors was an increase in expression of genes involved in DNA repair and apoptosis,
indicating a chronic stress response. One of the strong classi� ers found was crystallin alpha B (CRYAB),
a member of the small heat shock protein family relatively over-expressed in BRCA1 tumors. High levels

Table 4. Genes Found for Classifying BRCA1 Versus BRCA2

Clone ID # Gene descriptions

897781 30 keratin 8
950682 25 phosphofructokinase, platelet
839736 21 crystallin, alpha B
841641 18 cyclin D1 (PRAD1: parathyroid adenomatosis 1)
82991 14 ectonucleotide pyrophosphatase/phosphodiesterase 1

563598 7 gamma-aminobutyric acid (GABA) A receptor, pi
814270 5 polymyositis/scleroderma autoantigen 1 (75kD)
564803 4 forkhead box M1
214068 4 GATA-binding protein 3
823940 4 Tob1, transducer of ERBB2, 1
26184 3 phosphofructokinase, platelet

810551 3 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)
783729 3 ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

(neuro/glioblastoma derived oncogene homolog)
33794 3 ATP synthase, HC transporting, mitochondrial F1 complex, gamma polypeptide 1

211758 2 Homo sapiens cDNA: FLJ22256 � s, clone HRC02860
752631 2 � broblast growth factor receptor 3 (achondroplasia, thanatophoric dwar� sm)
711826 2 KIAA0019 gene product
135118 2 GATA-binding protein 3
840567 2 L6 antigen, transmembrane 4 superfamily member 1
245422 2 adducin 1 (alpha)
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Table 5. Strong Genes Found for Classifying BRCA1 C BRCA-Like
Sporadic Versus BRCA2 and Sporadic

Clone ID # Gene descriptions

897781 18 keratin 8
823940 17 Tob1, transducer of ERBB2, 1
563598 12 gamma-aminobutyric acid (GABA) A receptor, pi
841641 12 cyclin D1 (PRAD1: parathyroid adenomatosis 1)
280768 10 L6 antigen, transmembrane 4 superfamily member 1
840567 7 transmembrane 4 superfamily member 1
725454 4 CDC28 protein kinase 2
768370 4 tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, pseudoin� ammatory)
564803 4 forkhead box M1
81331 4 NA128†

365147 4 ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2
(neuro/glioblastoma derived oncogene homolog)

42888 4 interleukin enhancer binding factor 2, 45kD
839736 3 crystallin, alpha B
290871 3 Integrin alpha-3 subunit
141768 3 ERBB2, v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2

(neuro/glioblastoma derived oncogene homolog)
814595 3 protein kinase C binding protein 1
359119 3 CDC28 protein kinase 2
49888 2 ADP-ribosylation factor 4-like

825470 2 topoisomerase (DNA) II alpha (170kD)
133236 2 ESTs

† NA128 - not assigned to clusters in UniGene Build 128

of expression of this protein are associated with stress and can enhance cells’ resistance to stress induced
by DNA damage (Andley et al., 1998). A � nal noteworthy result further illustrates the sensitivity of the
method. Standard statistical methods used in the published study (Hedenfalk et al., 2001) to � nd genes
with classifying power identi� ed the ERBB2 (LO3E9 or HV54A3) gene as a classi� er, and it could be
seen that this gene was relatively underexpressed in BRCA1 genes, though there was one signi� cant outlier
case among the sporadic tumors. Gene ERBB2 was not found as a strong classi� er using the evaluation
reported in this chapter. The analysis of the expression pro� les of the full set of tumors suggested that the
ERBB2 outlier, sporadic cancer (the tumor sample from Patient 20), had an expression pattern unusually
similar to a BRCA1 tumor as shown in Fig. 6. Further examination of this tumor indicated that there was
substantial methylation of the promoter region of the BRCA1 gene in this individual, making it possible
that this individual had suf� ciently low BRCA1 expression to mimic the effects of a gene mutation. When
a classi� er for BRCA1 versus BRCA2 and sporadic cancers was built with the BRCA1-like sporadic case
classed with the authentic BRCA1 mutants, the ERBB2 gene was once again identi� ed as a strong classi� er
as shown in Table 5. This demonstrates that this procedure exhibits the expected strong exclusion of genes
that have even a single outlier.

7. CONCLUSION

The proposed parameterized classi� er-design algorithm yields classi� ers whose strength is measured in
terms of the variance of a distribution derived by spreading the sample data. In the case of linear classi� ers,
the classi� er can be derived by classical Wiener-� lter theory. This avoids time-consuming stochastic design
methodologies and is critical for genomic applications in which the set of potential features can be very
large. The algorithm has been applied to � nd features that can discriminate between BRCA1 and BRCA2
breast cancers, and it has performed in a more sensitive fashion than previous methods to achieve such
discrimination. The strategy employed allows one to � nd small numbers of genes having the greatest
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FIG. 6. The tumor sample from patient 20 as outlier in ERBB2 expression.

discriminating power, thereby allowing researchers to quickly focus on the most promising candidates for
diagnostics and therapeutics. Owing to the need to search among many feature sets, practical application
of the algorithm is suboptimal; however, intelligent searching has resulted in well-performing feature sets.
In the present paper, full searches have been implemented for one and two features, and ten million feature
sets have been examined within the search procedure for larger feature sets. With the completion of the
new 5,000 CPU machine, much greater numbers of feature sets will be tested.
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A. APPENDIX: ANALYTICAL ERROR REPRESENTATION

We expand Equation 14 for the analytic error representation. For the uniform circular distribution with
radius R, consider a sample data point xk lying in the correct region. The contribution of xk to the distri-
bution of the sample points after spreading by Z is depicted in Fig. 7. For 0 < h < R, the corresponding
contribution to the misclassi� cation error (prior to normalization) is given by

"d.h; R/ D
Z R

h

Vd¡1

±q
R2 ¡ x2

j

²
dxj (24)

where Vd.R/ is the hypervolume of the sphere of radius R in <d . A change of variables yields

"d.h; R/ D RdVd¡1

Z 1

h=R

±
1 ¡ y2

j

² d¡1
2

dyj

D Rd"d.h=R/ (25)

where "d.h=R/ is the error for the unit hypersphere and Vd¡1 is the hypervolume of the unit hypersphere
in <d . For h ¸ R, "d.h; R/ D 0. If xk lies on the wrong side of the hyperplane, then its contribution to
the error after spreading will be Vd .R/ ¡ "d.h; R/. With arbitrary d , the integral is problematic (in fact,
this can be represented using hypergeometric function), but it is not dif� cult for � xed d . For example,
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where h¤ D h=R.
To obtain a normalized total error for the sample fx1; x2; : : : ; xng, let T.xk/ D 0 if xk is classi� ed

correctly and T.xk/ D 1 otherwise. Normalizing by the volume of the n spheres for the sample yields the
misclassi� cation error
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where hk is the distance from xk to the hyperplane, h¤
k D hk=R, and Vd is the hypervolume of the unit

hypersphere in <d .
For Gaussian distribution, the error contribution for each sample point is given in terms of the error

function by "d.h; ¾ / D .1¡erf.h=
p

2¾ //=2, which includes the normalization as part of the error function.
The quantity "¾ is found by summing the contributions and then dividing by n.
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FIG. 7. Misclassi� cation error for a sample data with spreading.
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